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The unit simplex
The unit simplex in R"is ¥ = {x e RT;x; + - -+ x, < 1}
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A polynomial of degree m is of the form p(z) =" 5 3az®

Question: What happens when we use a different shape from %7
What properties of & are important? Neighborhood of zero, projections
to the axes, symmetry, interior, ...
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Polynomials with exponents in convex sets

Let S be a compact convex subset of R/ with 0 € S. For every m € N
we let P2 (C") by all polynomials in n complex variables of the form

p(z) = Z a,z%,zeC"

ae(mS)NN"

with the standard multi-index notation and let P°(C") = UpnenP(C").
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Let S be a compact convex subset of R with 0 € S. For every m € N
we let P2 (C") by all polynomials in n complex variables of the form

p(z) = Z a,z%,zeC"

ae(mS)NN"

with the standard multi-index notation and let P°(C") = UpnenP(C").

SA )
3 3 3 o(mﬂ «(33) o (47)
2 2 Y (:'ﬂ . 3P 2 “y (;Lm o &P
1 ® ({1 1 o (40 o (27) 1 o (U0 o (27
o) 1 Z 3 7 e 1z 3 BRI
Note

This theory does not provide anything new when n = 1.
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Our settings
We will assume 0 € S and S is convex and compact.
This implies P°(C") is a graded ring, since

PS(CTPE(CT) € PEACT).

Supporting function

Define the supporting function of S as ¢s(€) = sup,cs(x,&), € € R".
¢s is positively homogeneous of degree 1 and convex.
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Our settings

We will assume 0 € S and S is convex and compact.
This implies P°(C") is a graded ring, since

PS(CTPE(CT) € PEACT).

Supporting function
Define the supporting function of S as ¢s(€) = sup,cs(x,&), € € R".
¢s is positively homogeneous of degree 1 and convex.
Also, every 1-homogeneous convex function ¢ is the supporting function
of

S={xeR"(x,& < ¢,&cR"}.

¢5(§) = max <X7§>7 § € R"

xEext S

¢51+52 (E) = ¢51 (5) + ¢Sz (5)
Pas(e) = Aps (&)
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Logarithmic supporting functions
For z € C*" we define the logarithmic supporting function

Hs(z) = (¢s o (log|z1],- -+, log|zn|)) = Sug(sl log |z1[ + - - - 4 sp log |zn]).
sE
and extend it to C" by

Hs(z) = limsup Hs(w).

C*"sw—z
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Logarithmic supporting functions
For z € C*" we define the logarithmic supporting function

Hs(z) = (¢s o (log|z1],- -+, log|zn|)) = Sug(sl log |z1[ + - - - 4 sp log |zn]).
sE
and extend it to C" by

Hs(z) = limsup Hs(w).

C*"sw—z

Remark

HS(Z) < (bS(la ) 1) |Og+ ||ZHOO
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Continuity

If S C R is a compact convex set which contains 0, then Hs is
plurisubharmonic and continuous on C”.
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Continuity

If S C R is a compact convex set which contains 0, then Hs is
plurisubharmonic and continuous on C”.

The closed unit ball w.r.t.t. || - ||oc norm, By is contained in the zero set
of Hs, and it is equal to By, if and only if R, S = R7.

Maximal plurisubharmonic functions play in many aspects the role of
harmonic functions when we are working in C".

Maximal plurisubharmonic functions
A plurisubharmonic function v on Q € C" is maximal if for every G CC Q

and v € USC(G) NPSH(G) such that v < u on 9G implies v < u on G.

Maximality of Hs
Hs is maximal outside of the boundary of {Hs = 0}.
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Examples
For ¥ C R’ we have ¢5 (&) = max{0,&1,...,&,} and

Hs(z) = max log™ |z = log™ 2]
j=1,...,n

)
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Examples
For ¥ C R’ we have ¢5(£) = max{0,&1,...,&,} and

Hs(z) = max log" |zj| = log™ |1z
Jj=1,...,n

)

For S = ch((0,0),(1,0),(1,1)) € Ri we have
¢s(§) = max{0, &1, &1 + &2} and

Hs(z) = max{0, log|zi|,log |z1| + log |2 }.
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The Lelong class with respect to S
Define the Lelong class £3(C") = {u € PSH(C"); u(z) < c, + Hs2) "
Proposition
Let p € O(C"), then p € P2(C") if and only if log |p|*/™ € £3(C").
The Siciak-Zakharyuta function
For EC C" and q: E — R U {+0cc} we define

V,;—gjq(z) = sup{u(z); u € L5(C"), ule < g}, zeC".
Remark: We omit Sis S =%, and we omit ¢g if g = 0.

Admissible weight

From now on we assume g is an admissible weight, that is
» g is lower semi-continuous (g € LSC(C")),
» {z € E;q(z) < +oo} is non-pluripolar, and
> if £ is unbounded limgs, |00 (Hs(2) — q(2)) = —c0.
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Properties of V2
> V}ffq € L(C") where * denotes the upper regularization.
> V2, € LSC(C*"), and
> if V,f’*q < g in K, then V,%q € L3(C") N c(C*N).
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Properties of V2

> V;ffq € L(C") where * denotes the upper regularization.
> V2, € LSC(C*"), and
> if V;E’*q < g in K, then V,%q € L5(C") N Cc(C*n).

Limits
Let S;, j € Nand S be compact convex subsets of R, with 0 € S and
S; \( S, and g be an admissible weight on a compact subset K of C".
> £5(C7) = Njenl(C7).
> If Vi’; < g on K for some j, then V[j’;q N\ Viq as j — oo.

» If (gj)jen is a sequence LSC(K) and q; ,* q, then g; is an
admissible weight for every j and Vi ( I|m V[?*qj)*.
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The Siciak extremal function
Let EC C"and g: E - RU{+o0}. For m € N we define

OE q.m(2) = sup{|p(2)[V/™; p € P(C"), e~ ™|le < 1},

and
¢gq(z) = limsup ¢‘,§—’q7m(z), zeC".

m—00
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The Siciak extremal function
Let EC C"and g: E - RU{+o0}. For m € N we define

OE q.m(2) = sup{|p(2)[V/™; p € P(C"), e~ ™|le < 1},

and
of (z) = limsup®F . (2), zeC"
m—o00

Proposition
For j,k=1,2,3,...

(02 0,2 (92 4 4(2)" < (P 0;u(2) ™, zeC

E,q,j E,q,k = E,q,j+k ) )
and

¢gq(z) = lim ¢g7q7m( ) = sup chqm( 2), zeC.

m—o0 m>1
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The Siciak extremal function
Let EC C"and g: E - RU{+o0}. For m € N we define

OE q.m(2) = sup{|p(2)[V/™; p € P(C"), e~ ™|le < 1},

and
O q(2) =limsup OF ; (2),  zE€C".
Proposition
For j k=1,2,3,...
. . » )
(o2 0.j(Z ))J(q’qu( )" < (¢§,qJ+k(2))’ ) zeC",
and

¢gq(z): lim chqm( z) = sup chqm( 2), zeC.

m—o0 m>1

If g is bounded below and CDE o IS continuous on some compact subset X

of C", then the convergence is uniform on X. 11718



An property which has shown to be very important is the following.
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An property which has shown to be very important is the following.

Lower sets
The set S is a lower set if for a point s € S then t € S where 0 < t; < s;
forj=1,...,n.

A A
3 3
2 2
1 1
o) 1 =z 3 7 o) 4 7 3 g

Figure: Lower set (left) and not a lower set (right)
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The Siciak-Zakharjuta theorem

It is clear that log ®x ¢ < Vi 4. But in what cases is the family of
polynomials "big" enough to have an equality?
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The Siciak-Zakharjuta theorem

It is clear that log ®x ¢ < Vi 4. But in what cases is the family of
polynomials "big" enough to have an equality?

Theorem (Zakharjuta, Siciak, Bloom)
If K € C"is compact and q is an admissible weight on K, then

Vqu = |Og ¢K7q-

Theorem (Bos-Levenberg, Bayrakter et.al)

Let 0 € S C R’} be a compact, convex, lower set with non-empty interior.
If K € C"is closed and g an admissible weight, then

S S
VK,q = |Og q)K,q'

Example
If S =ch{(0,0),(m, 1)} then we do not have an equality above.

13/18



Product formula
With S =¥ and g = 0 we have for compact sets K; C C" that

Vi x Kk, (2) = max{ Vk,(z1), Vk,(22)}, z=(z1,20) € C"t"2,
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Product formula
With S =X and g = 0 we have for compact sets K; C C% that

Vi x Kk, (2) = max{ Vk,(z1), Vk,(22)}, z=(z1,20) € C"t"2,

Levenberg and Perera have the following variant of this: Let Ky,..., K,
be compact subsets of C and S a lower set, then

VK1><---><K,,(Z) = ¢5(V;21(21)7 SRR V;é,,(zn))'

Example

The following example shows that the lower set requirement are
necessary. Let Ky = Ky =D, then Vi (zj) = log™ |zj|. Let
S = ch{(0,0), (1,0),(1,1), (0, a)}, then

¢s = max{0, &1, & + &2, ak}

However

¢s(V(z1), Vp(z1)) = ¢s(€7)

14 /18



Theorem

Let S be a compact convex subset of R, 0 € S, m € N*, and
dm = d(mS,N"\ mS) denote the euclidean distance between the sets
mS and N"\ mS. Let f € O(C"), assume that

[ IR ) e s dh < o
Cn

for some 0 < v < dp,, and let yg denote the infimum of such ~. Let I be
the cone consisting of all £ such that the angle between the vectors
1=(1,...,1) and { is < arccos(—(dm — Y0)/+/n) and let Sr be the hull
of S with respect to the cone I' defined by

5 = {x € RL; (x,€) < ¢s(€),VE € T}

Then f € P2 (C").

Corollary
If in addition S is a lower set then f € P35 (C").
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Example =
Fix mand let 0 < a< b < 1 and define S C R%r as the quadrangle -

S = ch{(0,0), (a,0), (b, 1 — b), (0,1)}.

For a small enough and b close
enough to 1 we can show that

f(z) =2z k=1,....m—1
satisfy the previous L2 estimate,
but they are clearly not in P32 (C?).

(0,1)

N(mb, m(1- b))
(1,0) (m—1,0) (m.0)
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Example
Fix mand let 0 < a< b < 1 and define S C R%r as the quadrangle -

S = ch{(0,0), (a,0), (b, 1 — b), (0,1)}.

For a small enough and b close
enough to 1 we can show that
f(z) =2z k=1,....m—1
satisfy the previous L2 estimate,
but they are clearly not in P32 (C?).
This shows that it is necessary to
use the hull of S in the Theorem
above.

N(mb, m(1-b))
(m—1,0) (m.0)

16/18
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Summary

>
>
| 2

We can almost characterize polynomials by an L? estimate.
We have a product formula for V,? when S in an lower set.

We (at least) have a Siciak-Zakharjuta theorem when S is an lower
set. Definitely not always.

Both V,%q and d>f<7q have similar properties as Vi 4 and @ ,.

(Not shown here) We can connect V;?q to polynomials
approximations with P°(C"), i.e. a Bernstein-Walsh theorem.
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Thanks
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