จHi

Polynomials with exponents in compact convex sets and

 associated weighted extremal functionsBenedikt Magnusson bsm@hi.is
Science Institute - University of Iceland
Seminar on Methods of Approximation Theory - Jagiellonian University March 8, 2023

Joint work with

- Prof. Ragnar Sigurðsson, University of Iceland
- Phd student Álfheiður Edda Sigurðardóttir, University of Iceland
- Phd student Bergur Snorrason, University of Iceland

Done with the support of the Icelandic Research Fund (grant 207236-051) and the Science Institute, University of Iceland.

The unit simplex
The unit simplex in \mathbb{R}^{n} is $\Sigma=\left\{\mathrm{x} \in \mathbb{R}_{+}^{n} ; x_{1}+\cdots+x_{n} \leq 1\right\}$

The unit simplex
The unit simplex in \mathbb{R}^{n} is $\Sigma=\left\{\mathrm{x} \in \mathbb{R}_{+}^{n} ; x_{1}+\cdots+x_{n} \leq 1\right\}$

A polynomial of degree m is of the form $p(z)=\sum_{\alpha \in m \Sigma} a_{\alpha} z^{\alpha}$

The unit simplex
The unit simplex in \mathbb{R}^{n} is $\Sigma=\left\{\mathrm{x} \in \mathbb{R}_{+}^{n} ; x_{1}+\cdots+x_{n} \leq 1\right\}$

A polynomial of degree m is of the form $p(z)=\sum_{\alpha \in m \Sigma} a_{\alpha} z^{\alpha}$

The unit simplex
The unit simplex in \mathbb{R}^{n} is $\Sigma=\left\{x \in \mathbb{R}_{+}^{n} ; x_{1}+\cdots+x_{n} \leq 1\right\}$

A polynomial of degree m is of the form $p(z)=\sum_{\alpha \in m \Sigma} a_{\alpha} z^{\alpha}$
Question: What happens when we use a different shape from Σ ?

The unit simplex
The unit simplex in \mathbb{R}^{n} is $\Sigma=\left\{\mathrm{x} \in \mathbb{R}_{+}^{n} ; x_{1}+\cdots+x_{n} \leq 1\right\}$

A polynomial of degree m is of the form $p(z)=\sum_{\alpha \in m \Sigma} a_{\alpha} z^{\alpha}$
Question: What happens when we use a different shape from Σ ? What properties of Σ are important?

The unit simplex
The unit simplex in \mathbb{R}^{n} is $\Sigma=\left\{x \in \mathbb{R}_{+}^{n} ; x_{1}+\cdots+x_{n} \leq 1\right\}$

A polynomial of degree m is of the form $p(z)=\sum_{\alpha \in m \Sigma} a_{\alpha} z^{\alpha}$
Question: What happens when we use a different shape from Σ ? What properties of Σ are important? Neighborhood of zero, projections to the axes, symmetry, interior, ...

Polynomials with exponents in convex sets

Let S be a compact convex subset of \mathbb{R}_{+}^{n} with $0 \in S$. For every $m \in \mathbb{N}$ we let $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$ by all polynomials in n complex variables of the form

$$
p(z)=\sum_{\alpha \in(m S) \cap \mathbb{N}^{n}} a_{\alpha} z^{\alpha}, z \in \mathbb{C}^{n}
$$

with the standard multi-index notation and let $\mathcal{P}^{S}\left(\mathbb{C}^{n}\right)=\cup_{m \in \mathbb{N}} \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$.

Polynomials with exponents in convex sets

Let S be a compact convex subset of \mathbb{R}_{+}^{n} with $0 \in S$. For every $m \in \mathbb{N}$ we let $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$ by all polynomials in n complex variables of the form

$$
p(z)=\sum_{\alpha \in(m S) \cap \mathbb{N}^{n}} a_{\alpha} z^{\alpha}, z \in \mathbb{C}^{n}
$$

with the standard multi-index notation and let $\mathcal{P}^{S}\left(\mathbb{C}^{n}\right)=\cup_{m \in \mathbb{N}} \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$.

Note
This theory does not provide anything new when $n=1$.

Our settings

We will assume $0 \in S$ and S is convex and compact.
This implies $\mathcal{P}^{S}\left(\mathbb{C}^{n}\right)$ is a graded ring, since

$$
\mathcal{P}_{j}^{S}\left(\mathbb{C}^{n}\right) \mathcal{P}_{k}^{S}\left(\mathbb{C}^{n}\right) \subset \mathcal{P}_{j+k}^{S}\left(\mathbb{C}^{n}\right) .
$$

Supporting function
Define the supporting function of S as $\phi_{S}(\xi)=\sup _{x \in S}\langle x, \xi\rangle, \xi \in \mathbb{R}^{n}$. ϕ_{s} is positively homogeneous of degree 1 and convex.

Our settings
We will assume $0 \in S$ and S is convex and compact.
This implies $\mathcal{P}^{S}\left(\mathbb{C}^{n}\right)$ is a graded ring, since

$$
\mathcal{P}_{j}^{S}\left(\mathbb{C}^{n}\right) \mathcal{P}_{k}^{S}\left(\mathbb{C}^{n}\right) \subset \mathcal{P}_{j+k}^{S}\left(\mathbb{C}^{n}\right) .
$$

Supporting function
Define the supporting function of S as $\phi_{S}(\xi)=\sup _{x \in S}\langle x, \xi\rangle, \xi \in \mathbb{R}^{n}$. ϕ_{s} is positively homogeneous of degree 1 and convex. Also, every 1-homogeneous convex function ϕ is the supporting function of

$$
S=\left\{x \in \mathbb{R}^{n} ;\langle x, \xi\rangle \leq \phi, \xi \in \mathbb{R}^{n}\right\} .
$$

Our settings

We will assume $0 \in S$ and S is convex and compact.
This implies $\mathcal{P}^{S}\left(\mathbb{C}^{n}\right)$ is a graded ring, since

$$
\mathcal{P}_{j}^{S}\left(\mathbb{C}^{n}\right) \mathcal{P}_{k}^{S}\left(\mathbb{C}^{n}\right) \subset \mathcal{P}_{j+k}^{S}\left(\mathbb{C}^{n}\right) .
$$

Supporting function
Define the supporting function of S as $\phi_{S}(\xi)=\sup _{x \in S}\langle x, \xi\rangle, \xi \in \mathbb{R}^{n}$. ϕs is positively homogeneous of degree 1 and convex. Also, every 1-homogeneous convex function ϕ is the supporting function of

$$
S=\left\{x \in \mathbb{R}^{n} ;\langle x, \xi\rangle \leq \phi, \xi \in \mathbb{R}^{n}\right\} .
$$

$$
\begin{aligned}
\phi_{S}(\xi) & =\max _{x \in \operatorname{exx} s}\langle x, \xi\rangle, \quad \xi \in \mathbb{R}^{n} \\
\phi_{S_{1}}+S_{2}(\xi) & =\phi_{S_{1}}(\xi)+\phi_{S_{2}}(\xi) \\
\phi_{\lambda S(\xi)} & =\lambda \phi_{S}(\xi)
\end{aligned}
$$

Logarithmic supporting functions
For $z \in \mathbb{C}^{* n}$ we define the logarithmic supporting function

$$
H_{S}(z)=\left(\phi_{S} \circ\left(\log \left|z_{1}\right|, \cdots, \log \left|z_{n}\right|\right)\right)=\sup _{s \in S}\left(s_{1} \log \left|z_{1}\right|+\cdots+s_{n} \log \left|z_{n}\right|\right) .
$$

and extend it to \mathbb{C}^{n} by

$$
H_{S}(z)=\limsup _{\mathbb{C}^{* n} \ni w \rightarrow z} H_{S}(w)
$$

Logarithmic supporting functions
For $z \in \mathbb{C}^{* n}$ we define the logarithmic supporting function

$$
H_{S}(z)=\left(\phi_{S} \circ\left(\log \left|z_{1}\right|, \cdots, \log \left|z_{n}\right|\right)\right)=\sup _{s \in S}\left(s_{1} \log \left|z_{1}\right|+\cdots+s_{n} \log \left|z_{n}\right|\right) .
$$

and extend it to \mathbb{C}^{n} by

$$
H_{S}(z)=\limsup _{\mathbb{C}^{* n} \ni w \rightarrow z} H_{S}(w)
$$

Remark

$$
H_{S}(z) \leq \phi_{S}(1, \ldots, 1) \log ^{+}\|z\|_{\infty}
$$

Continuity
If $S \subset \mathbb{R}_{+}^{n}$ is a compact convex set which contains 0 , then H_{S} is plurisubharmonic and continuous on \mathbb{C}^{n}.

Continuity

If $S \subset \mathbb{R}_{+}^{n}$ is a compact convex set which contains 0 , then H_{S} is plurisubharmonic and continuous on \mathbb{C}^{n}.
The closed unit ball w.r.t.t. $\|\cdot\|_{\infty}$ norm, $\overline{\mathrm{B}}_{\infty}$ is contained in the zero set of H_{S}, and it is equal to $\overline{\mathrm{B}}_{\infty}$ if and only if $\mathbb{R}_{+} S=\mathbb{R}_{+}^{n}$.

Continuity

If $S \subset \mathbb{R}_{+}^{n}$ is a compact convex set which contains 0 , then H_{S} is plurisubharmonic and continuous on \mathbb{C}^{n}.
The closed unit ball w.r.t.t. $\|\cdot\|_{\infty}$ norm, $\overline{\mathrm{B}}_{\infty}$ is contained in the zero set of H_{S}, and it is equal to $\overline{\mathrm{B}}_{\infty}$ if and only if $\mathbb{R}_{+} S=\mathbb{R}_{+}^{n}$.

Maximal plurisubharmonic functions play in many aspects the role of harmonic functions when we are working in \mathbb{C}^{n}.

Continuity

If $S \subset \mathbb{R}_{+}^{n}$ is a compact convex set which contains 0 , then H_{S} is plurisubharmonic and continuous on \mathbb{C}^{n}.
The closed unit ball w.r.t.t. $\|\cdot\|_{\infty}$ norm, $\overline{\mathrm{B}}_{\infty}$ is contained in the zero set of H_{S}, and it is equal to \bar{B}_{∞} if and only if $\mathbb{R}_{+} S=\mathbb{R}_{+}^{n}$.

Maximal plurisubharmonic functions play in many aspects the role of harmonic functions when we are working in \mathbb{C}^{n}.

Maximal plurisubharmonic functions
A plurisubharmonic function u on $\Omega \subset \mathbb{C}^{n}$ is maximal if for every $G \subset \subset \Omega$ and $v \in \mathcal{U S C}(\bar{G}) \cap \mathcal{P S H}(G)$ such that $v \leq u$ on ∂G implies $v \leq u$ on G.

Continuity

If $S \subset \mathbb{R}_{+}^{n}$ is a compact convex set which contains 0 , then H_{S} is plurisubharmonic and continuous on \mathbb{C}^{n}.
The closed unit ball w.r.t.t. $\|\cdot\|_{\infty}$ norm, $\overline{\mathrm{B}}_{\infty}$ is contained in the zero set of H_{S}, and it is equal to $\overline{\mathrm{B}}_{\infty}$ if and only if $\mathbb{R}_{+} S=\mathbb{R}_{+}^{n}$.

Maximal plurisubharmonic functions play in many aspects the role of harmonic functions when we are working in \mathbb{C}^{n}.

Maximal plurisubharmonic functions
A plurisubharmonic function u on $\Omega \subset \mathbb{C}^{n}$ is maximal if for every $G \subset \subset \Omega$ and $v \in \mathcal{U S C}(\bar{G}) \cap \mathcal{P S H}(G)$ such that $v \leq u$ on ∂G implies $v \leq u$ on G.

Maximality of H_{S}
H_{S} is maximal outside of the boundary of $\left\{H_{S}=0\right\}$.

Examples

For $\Sigma \subset \mathbb{R}_{+}^{n}$ we have $\phi_{\Sigma}(\xi)=\max \left\{0, \xi_{1}, \ldots, \xi_{n}\right\}$ and

$$
H_{S}(z)=\max _{j=1, \ldots, n} \log ^{+}\left|z_{j}\right|=\log ^{+}\|z\|_{\infty}
$$

Examples

For $\Sigma \subset \mathbb{R}_{+}^{n}$ we have $\phi_{\Sigma}(\xi)=\max \left\{0, \xi_{1}, \ldots, \xi_{n}\right\}$ and

$$
H_{S}(z)=\max _{j=1, \ldots, n} \log ^{+}\left|z_{j}\right|=\log ^{+}\|z\|_{\infty}
$$

For $S=\operatorname{ch}((0,0),(1,0),(1,1)) \in \mathbb{R}_{+}^{2}$ we have $\phi_{S}(\xi)=\max \left\{0, \xi_{1}, \xi_{1}+\xi_{2}\right\}$ and

$$
H_{S}(z)=\max \left\{0, \log \left|z_{1}\right|, \log \left|z_{1}\right|+\log \mid z_{2}\right\} .
$$

The Lelong class with respect to S
Define the Lelong class $\mathcal{L}^{S}\left(\mathbb{C}^{n}\right)=\left\{u \in \mathcal{P S H}\left(\mathbb{C}^{n}\right) ; u(z) \leq c_{u}+H_{S}(z)\right\}$.

The Lelong class with respect to S
Define the Lelong class $\mathcal{L}^{S}\left(\mathbb{C}^{n}\right)=\left\{u \in \mathcal{P S H}\left(\mathbb{C}^{n}\right) ; u(z) \leq c_{u}+H_{S}(z)\right\}$.
Proposition
Let $p \in \mathcal{O}\left(\mathbb{C}^{n}\right)$, then $p \in \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$ if and only if $\log |p|^{1 / m} \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right)$.
The Siciak-Zakharyuta function
For $E \subset \mathbb{C}^{n}$ and $q: E \rightarrow \mathbb{R} \cup\{+\infty\}$ we define

$$
V_{E, q}^{S}(z)=\sup \left\{u(z) ; u \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right),\left.u\right|_{E} \leq q\right\}, \quad z \in \mathbb{C}^{n}
$$

The Lelong class with respect to S
Define the Lelong class $\mathcal{L}^{S}\left(\mathbb{C}^{n}\right)=\left\{u \in \mathcal{P S H}\left(\mathbb{C}^{n}\right) ; u(z) \leq c_{u}+H_{S}(z)\right\}$.
Proposition
Let $p \in \mathcal{O}\left(\mathbb{C}^{n}\right)$, then $p \in \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$ if and only if $\log |p|^{1 / m} \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right)$.
The Siciak-Zakharyuta function
For $E \subset \mathbb{C}^{n}$ and $q: E \rightarrow \mathbb{R} \cup\{+\infty\}$ we define

$$
V_{E, q}^{S}(z)=\sup \left\{u(z) ; u \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right),\left.u\right|_{E} \leq q\right\}, \quad z \in \mathbb{C}^{n}
$$

Remark: We omit S is $S=\Sigma$, and we omit q if $q=0$.

The Lelong class with respect to S
Define the Lelong class $\mathcal{L}^{S}\left(\mathbb{C}^{n}\right)=\left\{u \in \mathcal{P S H}\left(\mathbb{C}^{n}\right) ; u(z) \leq c_{u}+H_{S}(z)\right\}$.
Proposition
Let $p \in \mathcal{O}\left(\mathbb{C}^{n}\right)$, then $p \in \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$ if and only if $\log |p|^{1 / m} \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right)$.
The Siciak-Zakharyuta function
For $E \subset \mathbb{C}^{n}$ and $q: E \rightarrow \mathbb{R} \cup\{+\infty\}$ we define

$$
V_{E, q}^{S}(z)=\sup \left\{u(z) ; u \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right),\left.u\right|_{E} \leq q\right\}, \quad z \in \mathbb{C}^{n}
$$

Remark: We omit S is $S=\Sigma$, and we omit q if $q=0$.
Admissible weight
From now on we assume q is an admissible weight,

The Lelong class with respect to S
Define the Lelong class $\mathcal{L}^{S}\left(\mathbb{C}^{n}\right)=\left\{u \in \mathcal{P S H}\left(\mathbb{C}^{n}\right) ; u(z) \leq c_{u}+H_{S}(z)\right\}$.
Proposition
Let $p \in \mathcal{O}\left(\mathbb{C}^{n}\right)$, then $p \in \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$ if and only if $\log |p|^{1 / m} \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right)$.
The Siciak-Zakharyuta function
For $E \subset \mathbb{C}^{n}$ and $q: E \rightarrow \mathbb{R} \cup\{+\infty\}$ we define

$$
V_{E, q}^{S}(z)=\sup \left\{u(z) ; u \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right),\left.u\right|_{E} \leq q\right\}, \quad z \in \mathbb{C}^{n}
$$

Remark: We omit S is $S=\Sigma$, and we omit q if $q=0$.
Admissible weight
From now on we assume q is an admissible weight, that is

- q is lower semi-continuous $\left(q \in \mathcal{L S C}\left(\mathbb{C}^{n}\right)\right)$,
- $\{z \in E ; q(z)<+\infty\}$ is non-pluripolar, and
- if E is unbounded $\lim _{E \ni z,|z| \rightarrow \infty}\left(H_{S}(z)-q(z)\right)=-\infty$.

Properties of $V_{E, q}^{S}$

- $V_{K, q}^{S *} \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right)$ where * denotes the upper regularization.
- $V_{K, q}^{S} \in \mathcal{L S C}\left(\mathbb{C}^{* n}\right)$, and
- if $V_{K, q}^{S *} \leq q$ in K, then $V_{K, q}^{S} \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right) \cap C\left(\mathbb{C}^{* n}\right)$.

Properties of $V_{E, q}^{S}$

- $V_{K, q}^{S *} \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right)$ where * denotes the upper regularization.
- $V_{K, q}^{S} \in \mathcal{L S C}\left(\mathbb{C}^{* n}\right)$, and
- if $V_{K, q}^{S *} \leq q$ in K, then $V_{K, q}^{S} \in \mathcal{L}^{S}\left(\mathbb{C}^{n}\right) \cap C\left(\mathbb{C}^{* n}\right)$.

Limits
Let $S_{j}, j \in \mathbb{N}$ and S be compact convex subsets of \mathbb{R}_{+}^{n} with $0 \in S$ and $S_{j} \searrow S$, and q be an admissible weight on a compact subset K of \mathbb{C}^{n}.

- $\mathcal{L}^{S}\left(\mathbb{C}^{n}\right)=\cap_{j \in \mathbb{N}} \mathcal{L}^{S_{j}}\left(\mathbb{C}^{n}\right)$.
- If $V_{K, q}^{S_{j} *} \leq q$ on K for some j, then $V_{K, q}^{S_{j}} \searrow V_{K, q}^{S}$ as $j \rightarrow \infty$.
- If $\left(q_{j}\right)_{j \in \mathbb{N}}$ is a sequence $\mathcal{L S C}(K)$ and $q_{j} \nearrow q$, then q_{j} is an admissible weight for every j and $V_{K, q}^{S *}=\left(\lim _{j \rightarrow \infty} V_{K, q_{j}}^{S *}\right)^{*}$.

The Siciak extremal function
Let $E \subset \mathbb{C}^{n}$ and $q: E \rightarrow \mathbb{R} \cup\{+\infty\}$. For $m \in \mathbb{N}$ we define

$$
\Phi_{E, q, m}^{S}(z)=\sup \left\{|p(z)|^{1 / m} ; p \in \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right),\left\|p e^{-m q}\right\|_{E} \leq 1\right\}
$$

and

$$
\Phi_{E, q}^{S}(z)=\limsup _{m \rightarrow \infty} \Phi_{E, q, m}^{S}(z), \quad z \in \mathbb{C}^{n}
$$

The Siciak extremal function
Let $E \subset \mathbb{C}^{n}$ and $q: E \rightarrow \mathbb{R} \cup\{+\infty\}$. For $m \in \mathbb{N}$ we define

$$
\Phi_{E, q, m}^{S}(z)=\sup \left\{|p(z)|^{1 / m} ; p \in \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right),\left\|p e^{-m q}\right\|_{E} \leq 1\right\}
$$

and

$$
\Phi_{E, q}^{S}(z)=\limsup _{m \rightarrow \infty} \Phi_{E, q, m}^{S}(z), \quad z \in \mathbb{C}^{n}
$$

Proposition

For $j, k=1,2,3, \ldots$

$$
\left(\Phi_{E, q, j}^{S}(z)\right)^{j}\left(\Phi_{E, q, k}^{S}(z)\right)^{k} \leq\left(\Phi_{E, q, j+k}^{S}(z)\right)^{j+k}, \quad z \in \mathbb{C}^{n},
$$

and

$$
\Phi_{E, q}^{S}(z)=\lim _{m \rightarrow \infty} \Phi_{E, q, m}^{S}(z)=\sup _{m \geq 1} \Phi_{E, q, m}^{S}(z), \quad z \in \mathbb{C}^{n}
$$

The Siciak extremal function
Let $E \subset \mathbb{C}^{n}$ and $q: E \rightarrow \mathbb{R} \cup\{+\infty\}$. For $m \in \mathbb{N}$ we define

$$
\Phi_{E, q, m}^{S}(z)=\sup \left\{|p(z)|^{1 / m} ; p \in \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right),\left\|p e^{-m q}\right\|_{E} \leq 1\right\}
$$

and

$$
\Phi_{E, q}^{S}(z)=\limsup _{m \rightarrow \infty} \Phi_{E, q, m}^{S}(z), \quad z \in \mathbb{C}^{n}
$$

Proposition

For $j, k=1,2,3, \ldots$

$$
\left(\Phi_{E, q, j}^{S}(z)\right)^{j}\left(\Phi_{E, q, k}^{S}(z)\right)^{k} \leq\left(\Phi_{E, q, j+k}^{S}(z)\right)^{j+k}, \quad z \in \mathbb{C}^{n},
$$

and

$$
\Phi_{E, q}^{S}(z)=\lim _{m \rightarrow \infty} \Phi_{E, q, m}^{S}(z)=\sup _{m \geq 1} \Phi_{E, q, m}^{S}(z), \quad z \in \mathbb{C}^{n}
$$

If q is bounded below and $\Phi_{E, q}^{S}$ is continuous on some compact subset X of \mathbb{C}^{n}, then the convergence is uniform on X.

An property which has shown to be very important is the following.

An property which has shown to be very important is the following. Lower sets The set S is a lower set if for a point $s \in S$ then $t \in S$ where $0 \leq t_{j} \leq s_{j}$ for $j=1, \ldots, n$.

Figure: Lower set (left) and not a lower set (right)

The Siciak-Zakharjuta theorem
It is clear that $\log \Phi_{K, q} \leq V_{K, q}$. But in what cases is the family of polynomials "big" enough to have an equality?

The Siciak-Zakharjuta theorem
It is clear that $\log \Phi_{K, q} \leq V_{K, q}$. But in what cases is the family of polynomials "big" enough to have an equality?

Theorem (Zakharjuta, Siciak, Bloom)
If $K \subset \mathbb{C}^{n}$ is compact and q is an admissible weight on K, then

$$
V_{K, q}=\log \Phi_{K, q}
$$

The Siciak-Zakharjuta theorem
It is clear that $\log \Phi_{K, q} \leq V_{K, q}$. But in what cases is the family of polynomials "big" enough to have an equality?

Theorem (Zakharjuta, Siciak, Bloom)
If $K \subset \mathbb{C}^{n}$ is compact and q is an admissible weight on K, then

$$
V_{K, q}=\log \Phi_{K, q}
$$

Theorem (Bos-Levenberg, Bayrakter et.al)
Let $0 \in S \subset \mathbb{R}_{+}^{n}$ be a compact, convex, lower set with non-empty interior. If $K \subset \mathbb{C}^{n}$ is closed and q an admissible weight, then

$$
V_{K, q}^{S}=\log \Phi_{K, q}^{S}
$$

The Siciak-Zakharjuta theorem
It is clear that $\log \Phi_{K, q} \leq V_{K, q}$. But in what cases is the family of polynomials "big" enough to have an equality?

Theorem (Zakharjuta, Siciak, Bloom)
If $K \subset \mathbb{C}^{n}$ is compact and q is an admissible weight on K, then

$$
V_{K, q}=\log \Phi_{K, q}
$$

Theorem (Bos-Levenberg, Bayrakter et.al)
Let $0 \in S \subset \mathbb{R}_{+}^{n}$ be a compact, convex, lower set with non-empty interior. If $K \subset \mathbb{C}^{n}$ is closed and q an admissible weight, then

$$
V_{K, q}^{S}=\log \Phi_{K, q}^{S}
$$

Example

If $S=\operatorname{ch}\{(0,0),(\pi, 1)\}$ then we do not have an equality above.

Product formula

With $S=\Sigma$ and $q=0$ we have for compact sets $K_{j} \subset \mathbb{C}^{n_{j}}$ that

$$
V_{K_{1} \times K_{2}}(z)=\max \left\{V_{K_{1}}\left(z_{1}\right), V_{K_{2}}\left(z_{2}\right)\right\}, \quad z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{n_{1}+n_{2}} .
$$

Product formula
With $S=\Sigma$ and $q=0$ we have for compact sets $K_{j} \subset \mathbb{C}^{n_{j}}$ that

$$
V_{K_{1} \times K_{2}}(z)=\max \left\{V_{K_{1}}\left(z_{1}\right), V_{K_{2}}\left(z_{2}\right)\right\}, \quad z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{n_{1}+n_{2}} .
$$

Levenberg and Perera have the following variant of this: Let K_{1}, \ldots, K_{n} be compact subsets of \mathbb{C} and S a lower set, then

$$
V_{K_{1} \times \cdots \times K_{n}}(z)=\phi_{S}\left(V_{K_{1}}^{*}\left(z_{1}\right), \ldots, V_{K_{n}}^{*}\left(z_{n}\right)\right) .
$$

Product formula

With $S=\Sigma$ and $q=0$ we have for compact sets $K_{j} \subset \mathbb{C}^{n_{j}}$ that

$$
V_{K_{1} \times K_{2}}(z)=\max \left\{V_{K_{1}}\left(z_{1}\right), V_{K_{2}}\left(z_{2}\right)\right\}, \quad z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{n_{1}+n_{2}} .
$$

Levenberg and Perera have the following variant of this: Let K_{1}, \ldots, K_{n} be compact subsets of \mathbb{C} and S a lower set, then

$$
V_{K_{1} \times \cdots \times K_{n}}(z)=\phi_{s}\left(V_{K_{1}}^{*}\left(z_{1}\right), \ldots, V_{K_{n}}^{*}\left(z_{n}\right)\right) .
$$

Example

The following example shows that the lower set requirement are necessary. Let $K_{1}=K_{2}=\overline{\mathbb{D}}$, then $V_{K_{j}}\left(z_{j}\right)=\log ^{+}\left|z_{j}\right|$. Let $S=\operatorname{ch}\{(0,0),(1,0),(1,1),(0, a)\}$, then

$$
\phi_{S}=\max \left\{0, \xi_{1}, \xi_{1}+\xi_{2}, a \xi_{2}\right\} .
$$

However

$$
\phi_{S}\left(V_{\overline{\mathrm{D}}}\left(z_{1}\right), V_{\overline{\mathrm{D}}}\left(z_{1}\right)\right)=\phi_{S}\left(\xi^{+}\right)
$$

Theorem
Let S be a compact convex subset of $\mathbb{R}_{+}^{n}, 0 \in S, m \in \mathbb{N}^{*}$, and $d_{m}=d\left(m S, \mathbb{N}^{n} \backslash m S\right)$ denote the euclidean distance between the sets $m S$ and $\mathbb{N}^{n} \backslash m S$. Let $f \in \mathcal{O}\left(\mathbb{C}^{n}\right)$, assume that

$$
\int_{\mathbb{C}^{n}}|f|^{2}\left(1+|\zeta|^{2}\right)^{-\gamma} e^{-2 m H_{s}} d \lambda<+\infty
$$

for some $0 \leq \gamma<d_{m}$, and let γ_{0} denote the infimum of such γ. Let Γ be the cone consisting of all ξ such that the angle between the vectors $1=(1, \ldots, 1)$ and ξ is $\leq \arccos \left(-\left(d_{m}-\gamma_{0}\right) / \sqrt{n}\right)$ and let \widehat{S}_{Γ} be the hull of S with respect to the cone Γ defined by

$$
\hat{S}_{\Gamma}=\left\{x \in \mathbb{R}_{+}^{n} ;\langle x, \xi\rangle \leq \phi_{S}(\xi), \forall \xi \in \Gamma\right\}
$$

Then $f \in \mathcal{P}_{m}^{\widehat{S}_{\Gamma}}\left(\mathbb{C}^{n}\right)$.
Corollary
If in addition S is a lower set then $f \in \mathcal{P}_{m}^{S}\left(\mathbb{C}^{n}\right)$.

Example

Fix m and let $0<a<b<1$ and define $S \subseteq \mathbb{R}_{+}^{2}$ as the quadrangle

$$
S=\operatorname{ch}\{(0,0),(a, 0),(b, 1-b),(0,1)\} .
$$

For a small enough and b close enough to 1 we can show that $f(z)=z_{1}^{k}, k=1, \ldots, m-1$ satisfy the previous L^{2} estimate, but they are clearly not in $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{2}\right)$.

Example

Fix m and let $0<a<b<1$ and define $S \subseteq \mathbb{R}_{+}^{2}$ as the quadrangle

$$
S=\operatorname{ch}\{(0,0),(a, 0),(b, 1-b),(0,1)\}
$$

For a small enough and b close enough to 1 we can show that $f(z)=z_{1}^{k}, k=1, \ldots, m-1$ satisfy the previous L^{2} estimate, but they are clearly not in $\mathcal{P}_{m}^{S}\left(\mathbb{C}^{2}\right)$. This shows that it is necessary to use the hull of S in the Theorem above.

Summary

- We can almost characterize polynomials by an L^{2} estimate.

Summary

- We can almost characterize polynomials by an L^{2} estimate.
- We have a product formula for V_{K}^{S} when S in an lower set.

Summary

- We can almost characterize polynomials by an L^{2} estimate.
- We have a product formula for V_{K}^{S} when S in an lower set.
- We (at least) have a Siciak-Zakharjuta theorem when S is an lower set. Definitely not always.

Summary

- We can almost characterize polynomials by an L^{2} estimate.
- We have a product formula for V_{K}^{S} when S in an lower set.
- We (at least) have a Siciak-Zakharjuta theorem when S is an lower set. Definitely not always.
- Both $V_{K, q}^{S}$ and $\Phi_{K, q}^{S}$ have similar properties as $V_{K, q}$ and $\Phi_{K, q}$.

Summary

- We can almost characterize polynomials by an L^{2} estimate.
- We have a product formula for V_{K}^{S} when S in an lower set.
- We (at least) have a Siciak-Zakharjuta theorem when S is an lower set. Definitely not always.
- Both $V_{K, q}^{S}$ and $\Phi_{K, q}^{S}$ have similar properties as $V_{K, q}$ and $\Phi_{K, q}$.
- (Not shown here) We can connect $V_{K, q}^{S}$ to polynomials approximations with $\mathcal{P}^{S}\left(\mathbb{C}^{n}\right)$, i.e. a Bernstein-Walsh theorem.

Thanks

