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The unit simplex
The unit simplex in Rn is Σ = {x ∈ Rn

+; x1 + · · ·+ xn ≤ 1}

A polynomial of degree m is of the form p(z) =
∑

α∈mΣ aαz
α

Question: What happens when we use a different shape from Σ?
What properties of Σ are important? Neighborhood of zero, projections
to the axes, symmetry, interior, ...
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Polynomials with exponents in convex sets
Let S be a compact convex subset of Rn

+ with 0 ∈ S . For every m ∈ N
we let PS

m(Cn) by all polynomials in n complex variables of the form

p(z) =
∑

α∈(mS)∩Nn

aαz
α, z ∈ Cn

with the standard multi-index notation and let PS(Cn) = ∪m∈NPS
m(Cn).

Note
This theory does not provide anything new when n = 1.
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Our settings
We will assume 0 ∈ S and S is convex and compact.
This implies PS(Cn) is a graded ring, since

PS
j (Cn)PS

k (Cn) ⊂ PS
j+k(Cn).

Supporting function
Define the supporting function of S as ϕS(ξ) = supx∈S⟨x , ξ⟩, ξ ∈ Rn.
ϕS is positively homogeneous of degree 1 and convex.

Also, every 1-homogeneous convex function ϕ is the supporting function
of

S = {x ∈ Rn; ⟨x , ξ⟩ ≤ ϕ, ξ ∈ Rn}.

ϕS(ξ) = max
x∈extS

⟨x , ξ⟩, ξ ∈ Rn

ϕS1+S2(ξ) = ϕS1(ξ) + ϕS2(ξ)

ϕλS(ξ) = λϕS(ξ)
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Logarithmic supporting functions
For z ∈ C∗n we define the logarithmic supporting function

HS(z) = (ϕS ◦ (log |z1|, · · · , log |zn|)) = sup
s∈S

(s1 log |z1|+ · · ·+ sn log |zn|).

and extend it to Cn by

HS(z) = lim sup
C∗n∋w→z

HS(w).

Remark

HS(z) ≤ ϕS(1, . . . , 1) log+ ∥z∥∞.

6 / 18



Logarithmic supporting functions
For z ∈ C∗n we define the logarithmic supporting function

HS(z) = (ϕS ◦ (log |z1|, · · · , log |zn|)) = sup
s∈S

(s1 log |z1|+ · · ·+ sn log |zn|).

and extend it to Cn by

HS(z) = lim sup
C∗n∋w→z

HS(w).

Remark

HS(z) ≤ ϕS(1, . . . , 1) log+ ∥z∥∞.

6 / 18



Continuity
If S ⊂ Rn

+ is a compact convex set which contains 0, then HS is
plurisubharmonic and continuous on Cn.

The closed unit ball w.r.t.t. ∥ · ∥∞ norm, B∞ is contained in the zero set
of HS , and it is equal to B∞ if and only if R+S = Rn

+.

Maximal plurisubharmonic functions play in many aspects the role of
harmonic functions when we are working in Cn.

Maximal plurisubharmonic functions
A plurisubharmonic function u on Ω ⊂ Cn is maximal if for every G ⊂⊂ Ω
and v ∈ USC(G )∩PSH(G ) such that v ≤ u on ∂G implies v ≤ u on G .

Maximality of HS

HS is maximal outside of the boundary of {HS = 0}.
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Examples
For Σ ⊂ Rn

+ we have ϕΣ(ξ) = max{0, ξ1, . . . , ξn} and

HS(z) = max
j=1,...,n

log+ |zj | = log+ ∥z∥∞.

For S = ch((0, 0), (1, 0), (1, 1)) ∈ R2
+ we have

ϕS(ξ) = max{0, ξ1, ξ1 + ξ2} and

HS(z) = max{0, log |z1|, log |z1|+ log |z2}.
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The Lelong class with respect to S

Define the Lelong class LS(Cn) = {u ∈ PSH(Cn); u(z) ≤ cu + HS(z)}.

Proposition
Let p ∈ O(Cn), then p ∈ PS

m(Cn) if and only if log |p|1/m ∈ LS(Cn).

The Siciak-Zakharyuta function
For E ⊂ Cn and q : E → R ∪ {+∞} we define

V S
E ,q(z) = sup{u(z); u ∈ LS(Cn), u|E ≤ q}, z ∈ Cn.

Remark: We omit S is S = Σ, and we omit q if q = 0.

Admissible weight
From now on we assume q is an admissible weight, that is
▶ q is lower semi-continuous (q ∈ LSC(Cn)),
▶ {z ∈ E ; q(z) < +∞} is non-pluripolar, and
▶ if E is unbounded limE∋z,|z|→∞(HS(z)− q(z)) = −∞.
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Properties of V S
E ,q

▶ V S∗
K ,q ∈ LS(Cn) where ∗ denotes the upper regularization.

▶ V S
K ,q ∈ LSC(C∗n), and

▶ if V S∗
K ,q ≤ q in K , then V S

K ,q ∈ LS(Cn) ∩ C (C∗n).

Limits
Let Sj , j ∈ N and S be compact convex subsets of Rn

+ with 0 ∈ S and
Sj ↘ S , and q be an admissible weight on a compact subset K of Cn.
▶ LS(Cn) = ∩j∈NLSj (Cn).

▶ If V Sj∗
K ,q ≤ q on K for some j , then V

Sj
K ,q ↘ V S

K ,q as j → ∞.
▶ If (qj)j∈N is a sequence LSC(K ) and qj ↗ q, then qj is an

admissible weight for every j and V S∗
K ,q =

(
lim
j→∞

V S∗
K ,qj

)∗.
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The Siciak extremal function
Let E ⊂ Cn and q : E → R ∪ {+∞}. For m ∈ N we define

ΦS
E ,q,m(z) = sup{|p(z)|1/m; p ∈ PS

m(Cn), ∥pe−mq∥E ≤ 1},

and
ΦS
E ,q(z) = lim sup

m→∞
ΦS
E ,q,m(z), z ∈ Cn.

Proposition
For j , k = 1, 2, 3, . . .(

ΦS
E ,q,j(z)

)j(
ΦS
E ,q,k(z)

)k ≤
(
ΦS
E ,q,j+k(z)

)j+k
, z ∈ Cn,

and

ΦS
E ,q(z) = lim

m→∞
ΦS
E ,q,m(z) = sup

m≥1
ΦS
E ,q,m(z), z ∈ Cn.

If q is bounded below and ΦS
E ,q is continuous on some compact subset X

of Cn, then the convergence is uniform on X .
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An property which has shown to be very important is the following.

Lower sets
The set S is a lower set if for a point s ∈ S then t ∈ S where 0 ≤ tj ≤ sj
for j = 1, . . . , n.

Figure: Lower set (left) and not a lower set (right)
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The Siciak-Zakharjuta theorem
It is clear that log ΦK ,q ≤ VK ,q. But in what cases is the family of
polynomials "big" enough to have an equality?

Theorem (Zakharjuta, Siciak, Bloom)
If K ⊂ Cn is compact and q is an admissible weight on K , then

VK ,q = logΦK ,q.

Theorem (Bos-Levenberg, Bayrakter et.al)
Let 0 ∈ S ⊂ Rn

+ be a compact, convex, lower set with non-empty interior.
If K ⊂ Cn is closed and q an admissible weight, then

V S
K ,q = logΦS

K ,q.

Example
If S = ch{(0, 0), (π, 1)} then we do not have an equality above.
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Product formula
With S = Σ and q = 0 we have for compact sets Kj ⊂ Cnj that

VK1×K2(z) = max{VK1(z1),VK2(z2)}, z = (z1, z2) ∈ Cn1+n2 .

Levenberg and Perera have the following variant of this: Let K1, . . . ,Kn

be compact subsets of C and S a lower set, then

VK1×···×Kn(z) = ϕS(V
∗
K1
(z1), . . . ,V

∗
Kn
(zn)).

Example
The following example shows that the lower set requirement are
necessary. Let K1 = K2 = D, then VKj

(zj) = log+ |zj |. Let
S = ch{(0, 0), (1, 0), (1, 1), (0, a)}, then

ϕS = max{0, ξ1, ξ1 + ξ2, aξ2}.

However
ϕS(VD(z1),VD(z1)) = ϕS(ξ

+)
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S = ch{(0, 0), (1, 0), (1, 1), (0, a)}, then

ϕS = max{0, ξ1, ξ1 + ξ2, aξ2}.

However
ϕS(VD(z1),VD(z1)) = ϕS(ξ

+)
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Theorem
Let S be a compact convex subset of Rn

+, 0 ∈ S , m ∈ N∗, and
dm = d(mS ,Nn \mS) denote the euclidean distance between the sets
mS and Nn \mS . Let f ∈ O(Cn), assume that∫

Cn

|f |2(1 + |ζ|2)−γe−2mHS dλ < +∞

for some 0 ≤ γ < dm, and let γ0 denote the infimum of such γ. Let Γ be
the cone consisting of all ξ such that the angle between the vectors
1 = (1, . . . , 1) and ξ is ≤ arccos(−(dm − γ0)/

√
n) and let ŜΓ be the hull

of S with respect to the cone Γ defined by

ŜΓ = {x ∈ Rn
+; ⟨x , ξ⟩ ≤ ϕS(ξ), ∀ξ ∈ Γ}.

Then f ∈ P ŜΓ
m (Cn).

Corollary
If in addition S is a lower set then f ∈ PS

m(Cn).
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Example
Fix m and let 0 < a < b < 1 and define S ⊆ R2

+ as the quadrangle

S = ch{(0, 0), (a, 0), (b, 1 − b), (0, 1)}.

mS

(0,m)

(ma, 0)
(m−1, 0) (m, 0)

(0, 1)

(1, 0)

(mb,m(1−b))

For a small enough and b close
enough to 1 we can show that
f (z) = zk1 , k = 1, . . . ,m − 1
satisfy the previous L2 estimate,
but they are clearly not in PS

m(C2).

This shows that it is necessary to
use the hull of S in the Theorem
above.
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Summary
▶ We can almost characterize polynomials by an L2 estimate.

▶ We have a product formula for V S
K when S in an lower set.

▶ We (at least) have a Siciak-Zakharjuta theorem when S is an lower
set. Definitely not always.

▶ Both V S
K ,q and ΦS

K ,q have similar properties as VK ,q and ΦK ,q.

▶ (Not shown here) We can connect V S
K ,q to polynomials

approximations with PS(Cn), i.e. a Bernstein-Walsh theorem.

17 / 18



Summary
▶ We can almost characterize polynomials by an L2 estimate.
▶ We have a product formula for V S

K when S in an lower set.

▶ We (at least) have a Siciak-Zakharjuta theorem when S is an lower
set. Definitely not always.

▶ Both V S
K ,q and ΦS

K ,q have similar properties as VK ,q and ΦK ,q.

▶ (Not shown here) We can connect V S
K ,q to polynomials

approximations with PS(Cn), i.e. a Bernstein-Walsh theorem.

17 / 18



Summary
▶ We can almost characterize polynomials by an L2 estimate.
▶ We have a product formula for V S

K when S in an lower set.
▶ We (at least) have a Siciak-Zakharjuta theorem when S is an lower

set. Definitely not always.

▶ Both V S
K ,q and ΦS

K ,q have similar properties as VK ,q and ΦK ,q.

▶ (Not shown here) We can connect V S
K ,q to polynomials

approximations with PS(Cn), i.e. a Bernstein-Walsh theorem.

17 / 18



Summary
▶ We can almost characterize polynomials by an L2 estimate.
▶ We have a product formula for V S

K when S in an lower set.
▶ We (at least) have a Siciak-Zakharjuta theorem when S is an lower

set. Definitely not always.
▶ Both V S

K ,q and ΦS
K ,q have similar properties as VK ,q and ΦK ,q.

▶ (Not shown here) We can connect V S
K ,q to polynomials

approximations with PS(Cn), i.e. a Bernstein-Walsh theorem.

17 / 18



Summary
▶ We can almost characterize polynomials by an L2 estimate.
▶ We have a product formula for V S

K when S in an lower set.
▶ We (at least) have a Siciak-Zakharjuta theorem when S is an lower

set. Definitely not always.
▶ Both V S

K ,q and ΦS
K ,q have similar properties as VK ,q and ΦK ,q.

▶ (Not shown here) We can connect V S
K ,q to polynomials

approximations with PS(Cn), i.e. a Bernstein-Walsh theorem.

17 / 18



Thanks
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